--> -->
-->
Many
thanks to everyone at the ODYCCEUS Project for the opportunity to
present my ideas in Venice, January 29-30, 2018 -- in particular, Eckehard Olbrich, Massimo
Warglien, and Petter Törnberg. It was a great
symposium!
My presentation, The Ontology of Big Data: A Complex Realist Approach, comes from the first section of my forthcoming SAGE book with Rajeev Rajaram, titled appropriately enough, Data Mining Big Data: A Complex and Critical Perspective.
My
argument is as follows:
1.
Vis-à-vis the issue of big data, I think it useful to recognize that we are actually
dealing with multiple forms of ontology – both in terms of the existence of
which we are speaking and in terms of the form such an ontology takes.
2.
These multiple ontologies include: (a) philosophical ontology (i.e., realism,
existentialism, positivism, etc); (b) information science ontology (a formal
naming and definition of the types, properties, and interrelationships of the entities that really exist in a particular domain of discourse;
(c) the web of information science ontologies, the world-over, which constitute
a world-wide complex system of hundreds of thousands of colliding ontological
systems, grounded in our global socio-cybernetic infrastructure; (d) the
ontological structure of big data (velocity, variety, volume, etc); and (4) the
ontological assumptions of the methods used to data mine big data (e.g.,
machine intelligence, cluster analysis, etc).
3.
Together, these four intersecting ontologies creates a highly complex system of
ontological systems – which are redefining the big data reality in which we
presently exist.
4.
Based on MacKenzie’s Machine Learners (2017) and Konys’s Ontology-based approaches to big data
analytics, I would envision a new transdisciplinary field of study,
something akin to the archeology of big data ontologies, focused on an
archaeological investigation of the layers of coding and programs though which
our big data globalized world is emerging – from machine language up – and the
various intersections (or lack thereof) of their corresponding ontologies.
5.
This complex system, in my mind, forms the new world(s) in which we live.
As such, specific attention needs to be given to: (a) how these complex
structures form the colliding and conflicted ontological boundaries (or limits)
of our digital and bio-ecological life; (b) and, in turn, how these
contradictory and incomplete collisions (and the power relations upon which
they are based and produce) define our epistemological understanding of
contemporary digital and bio-ecological world(s) in which we live. And
all of this is important, because, in this new age of
socio-ecological-cybernetic existence, everything is at stake!
6. A
few possible ways to engage in such an “archaeology of big data ontologies”
would include:
(a) embracing
the framework of general complexity and, more specifically, complex realism, which treats all forms
of ontology (philosophical, methodological, big-data, and information science)
in complex systems terms;
(b) employing thenew methodological techniques of the
computational and complexity sciences (e.g., case-based
complexity, artificial neural nets, genetic algorithms, complex networks,
agent-based modeling, etc);
(c)
and, to borrow an excellent phrase Adrian MacKenzie coined at our symposium,
changing the social life of data analysis – which includes challenging the
passive role of users in employing the tools and techniques of data mining and
statistical analysis, as both the ODYCCEUS Project and my team’s development
of the COMPLEX-IT App seek to do.
MATERIALS IN SUPPORT OF MY PRESENTATION:
- CLICK HERE FOR A PDF OF MY PRESENTATION.
- For a quick overview of critical realism, CLICK HERE.
- For a quick overview of complex realism, read Byrne, D. (2004). Complex and contingent causation-the implications of complex realism for quantitative modelling. Making Realism Work: Realist Social Theory and Empirical Research. B. Carter and C. New. London, Routledge. CLICK HERE.
- See also, Williams, M., and Dyer, W. (2004). Complex Realism in Social Research. CLICK HERE
- To learn more about OWL and its usage to develop information science ontologies, CLICK HERE.
No comments:
Post a Comment